Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 11(10): e0164254, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27780260

RESUMO

We developed two new FRET imaging measures for intramolecular FRET biosensors, called linearly proportional (LP) and highly contrasting (HC) measures, which can be easily calculated by the fluorescence intensities of donor and acceptor as a ratio between their weighted sums. As an alternative to the conventional ratiometric measure, which non-linearly depends on the fraction of active molecule, we first developed the LP measure, which is linearly proportional to the fraction of active molecules. The LP measure inherently unmixes bleed-through signals and is robust against fluorescence noise. By extending the LP measure, we furthermore designed the HC measure, which provides highly contrasting images of the molecular activity, more than the ratiometric measure. In addition to their advantages, these measures are insensitive to the biosensor expression level, which is a fundamental property of the ratiometric measure. Using artificial data and FRET imaging data, we showed that the LP measure effectively represents the fraction of active molecules and that the HC measure improves visual interpretability by providing high contrast images of molecular activity. Therefore, the LP and HC measures allow us to gain more quantitative and qualitative insights from FRET imaging than the ratiometric measure.


Assuntos
Técnicas Biossensoriais/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Algoritmos , Biologia Computacional/métodos
2.
J Neurosci ; 36(9): 2571-81, 2016 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-26936999

RESUMO

During navigation, animals process temporal sequences of sensory inputs to evaluate the surrounding environment. Thermotaxis of Caenorhabditis elegans is a favorable sensory behavior to elucidate how navigating animals process sensory signals from the environment. Sensation and storage of temperature information by a bilaterally symmetric pair of thermosensory neurons, AFD, is essential for the animals to migrate toward the memorized temperature on a thermal gradient. However, the encoding mechanisms of the spatial environment with the temporal AFD activity during navigation remain to be elucidated. Here, we show how the AFD neuron encodes sequences of sensory inputs to perceive spatial thermal environment. We used simultaneous calcium imaging and tracking system for a freely moving animal and characterized the response property of AFD to the thermal stimulus during thermotaxis. We show that AFD neurons respond to shallow temperature increases with intermittent calcium pulses and detect temperature differences with a critical time window of 20 s, which is similar to the timescale of behavioral elements of C. elegans, such as turning. Convolution of a thermal stimulus and the identified response property successfully reconstructs AFD activity. Conversely, deconvolution of the identified response kernel and AFD activity reconstructs the shallow thermal gradient with migration trajectory, indicating that AFD activity and the migration trajectory are sufficient as the encoded signals for thermal environment. Our study demonstrates bidirectional transformation between environmental thermal information and encoded neural activity. SIGNIFICANCE STATEMENT: Deciphering how information is encoded in the nervous system is an important challenge for understanding the principles of information processing in neural circuits. During navigation behavior, animals transform spatial information to temporal patterns of neural activity. To elucidate how a sensory system achieves this transformation, we focused on a thermosensory neuron in Caenorhabditis elegans called AFD, which plays a major role in a sensory behavior. Using tracking and calcium imaging system for freely moving animals, we identified the response property of the AFD. The identified response property enabled us to reconstruct both neural activity from a temperature stimulus and a spatial thermal environment from neural activity. These results shed light on how a sensory system encodes the environment.


Assuntos
Neurônios/fisiologia , Sensação Térmica/fisiologia , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cálcio/metabolismo , Locomoção/fisiologia , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Neurônios Aferentes/fisiologia , Temperatura
3.
Sci Rep ; 5: 17527, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26634649

RESUMO

We propose a new computation-based approach for elucidating how signaling molecules are decoded in cell migration. In this approach, we performed FRET time-lapse imaging of Rac1 and Cdc42, members of Rho GTPases which are responsible for cell motility, and quantitatively identified the response functions that describe the conversion from the molecular activities to the morphological changes. Based on the identified response functions, we clarified the profiles of how the morphology spatiotemporally changes in response to local and transient activation of Rac1 and Cdc42, and found that Rac1 and Cdc42 activation triggers laterally propagating membrane protrusion. The response functions were also endowed with property of differentiator, which is beneficial for maintaining sensitivity under adaptation to the mean level of input. Using the response function, we could predict the morphological change from molecular activity, and its predictive performance provides a new quantitative measure of how much the Rho GTPases participate in the cell migration. Interestingly, we discovered distinct predictive performance of Rac1 and Cdc42 depending on the migration modes, indicating that Rac1 and Cdc42 contribute to persistent and random migration, respectively. Thus, our proposed predictive approach enabled us to uncover the hidden information processing rules of Rho GTPases in the cell migration.


Assuntos
Movimento Celular/genética , Neuropeptídeos/genética , Imagem com Lapso de Tempo , Proteína cdc42 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/genética , Linhagem Celular Tumoral , Extensões da Superfície Celular/genética , Transferência Ressonante de Energia de Fluorescência , Humanos , Neuropeptídeos/metabolismo , Transdução de Sinais/genética , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
4.
PLoS One ; 6(12): e27950, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22205934

RESUMO

During development, the formation of biological networks (such as organs and neuronal networks) is controlled by multicellular transportation phenomena based on cell migration. In multi-cellular systems, cellular locomotion is restricted by physical interactions with other cells in a crowded space, similar to passengers pushing others out of their way on a packed train. The motion of individual cells is intrinsically stochastic and may be viewed as a type of random walk. However, this walk takes place in a noisy environment because the cell interacts with its randomly moving neighbors. Despite this randomness and complexity, development is highly orchestrated and precisely regulated, following genetic (and even epigenetic) blueprints. Although individual cell migration has long been studied, the manner in which stochasticity affects multi-cellular transportation within the precisely controlled process of development remains largely unknown. To explore the general principles underlying multicellular migration, we focus on the migration of neural crest cells, which migrate collectively and form streams. We introduce a mechanical model of multi-cellular migration. Simulations based on the model show that the migration mode depends on the relative strengths of the noise from migratory and non-migratory cells. Strong noise from migratory cells and weak noise from surrounding cells causes "collective migration," whereas strong noise from non-migratory cells causes "dispersive migration." Moreover, our theoretical analyses reveal that migratory cells attract each other over long distances, even without direct mechanical contacts. This effective interaction depends on the stochasticity of the migratory and non-migratory cells. On the basis of these findings, we propose that stochastic behavior at the single-cell level works effectively and precisely to achieve collective migration in multi-cellular systems.


Assuntos
Movimento Celular , Modelos Biológicos , Comunicação Celular , Crista Neural/citologia , Processos Estocásticos
5.
Mol Biol Cell ; 22(18): 3541-9, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21795391

RESUMO

The number of vertebrae is defined strictly for a given species and depends on the number of somites, which are the earliest metameric structures that form in development. Somites are formed by sequential segmentation. The periodicity of somite segmentation is orchestrated by the synchronous oscillation of gene expression in the presomitic mesoderm (PSM), termed the "somite segmentation clock," in which Notch signaling plays a crucial role. Here we show that the clock period is sensitive to Notch activity, which is fine-tuned by its feedback regulator, Notch-regulated ankyrin repeat protein (Nrarp), and that Nrarp is essential for forming the proper number and morphology of axial skeleton components. Null-mutant mice for Nrarp have fewer vertebrae and have defective morphologies. Notch activity is enhanced in the PSM of the Nrarp(-/-) embryo, where the ~2-h segmentation period is extended by 5 min, thereby forming fewer somites and their resultant vertebrae. Reduced Notch activity partially rescues the Nrarp(-/-) phenotype in the number of somites, but not in morphology. Therefore we propose that the period of the somite segmentation clock is sensitive to Notch activity and that Nrarp plays essential roles in the morphology of vertebrae and ribs.


Assuntos
Relógios Biológicos , Regulação da Expressão Gênica no Desenvolvimento , Proteínas/genética , Receptores Notch/metabolismo , Somitos/metabolismo , Coluna Vertebral/embriologia , Animais , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/genética , Feminino , Perfilação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Camundongos , Camundongos Knockout , Gravidez , Proteínas/metabolismo , Radiografia , Coluna Vertebral/diagnóstico por imagem , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...